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Eisenstein series and the top degree cohomology
of arithmetic subgroups of SLn=Q

By Joachim Schwermer at Vienna

Abstract. The cohomology H�.�;E/ of a torsion-free arithmetic subgroup � of the
special linear Q-group G D SLn may be interpreted in terms of the automorphic spectrum
of � . Within this framework, there is a decomposition of the cohomology into the cuspidal
cohomology and the Eisenstein cohomology. The latter space is decomposed according to the
classes ¹Pº of associate proper parabolic Q-subgroups of G. Each summandH�

¹Pº.�;E/ is built
up by Eisenstein series (or residues of such) attached to cuspidal automorphic forms on the Levi
components of elements in ¹Pº.

The cohomology H�.�;E/ vanishes above the degree given by the cohomological di-
mension cd.�/ D 1

2
n.n � 1/. We are concerned with the internal structure of the cohomology

in this top degree. On the one hand, we explicitly describe the associate classes ¹Pº for which
the corresponding summandH cd.�/

¹Pº .�;E/ vanishes. On the other hand, in the remaining cases
of associate classes we construct various families of non-vanishing Eisenstein cohomology
classes which span H cd.�/

¹Qº .�;C/.
Finally, in the case of a principal congruence subgroup �.q/, q D p� > 5, p � 3 a prime,

we give lower bounds for the size of these spaces. In addition, for certain associate classes ¹Qº,
there is a precise formula for their dimension.

1. Introduction

1.1. Given a connected semi-simple algebraic Q-group G of rkQ G > 0, the group of
real-valued points G D G.R/ is a real Lie group. LetK be a maximal compact subgroup of G.
The homogeneous space G=K D X , the symmetric space associated to G, is diffeomorphic
to Rd.G/, where d.G/ D dimG � dimK, hence X is contractible.

An arithmetic subgroup � of G is a discrete subgroup of G, and � acts properly discon-
tinuously on X . If � is torsion-free, the action is free, and the quotient space �nX is a smooth
manifold of dimension d.G/. Since the underlying algebraic Q-group G has positive Q-rank,
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�nX is non-compact but of finite volume. It can be viewed as the interior of a natural com-
pactification with boundary, due to Borel and Serre [2]. This compactification is obtained as
the quotient under � of a G.Q/-equivariant partial compactification X .

The inclusion �nX ! �nX is a homotopy equivalence. The boundary à.�nX/ is glued
together out of faces e0.Q/, where Q ¤ G ranges over a set of representatives for the finitely
many �-conjugacy classes of proper parabolic Q-subgroups of G. The codimension of a given
face in �nX is the parabolic Q-rank of Q. The closures of the faces e0.Q/ form a closed cover
of the boundary à.�nX/ whose nerve is the quotient under the natural action of � of the Tits
building TG of proper parabolic Q-subgroups of G (cf. [2, Section 8.4.]).

Let .�; E/ be a finite-dimensional irreducible representation of the real Lie group G on
a complex vector space. We assume that this representation originates from an algebraic rep-
resentation of the algebraic Q-group G. Then the cohomology H�.�;E/ is isomorphic to the
cohomology H�.�nX;E/ [computed, for example, via the de Rham complex of E-valued
�-invariant differential forms on X ]. Interpreting these latter groups in terms of the auto-
morphic spectrum of � , by [5] resp. [6], there is a decomposition of the cohomology into
the cuspidal cohomology (i.e. classes represented by cuspidal automorphic forms for G with
respect to �) and the Eisenstein cohomology (i.e. classes represented by forms arising from
Eisenstein series for G with respect to �). The latter space is decomposed according to the
classes ¹Pº of associate proper parabolic Q-subgroups of G, that is, eventually we obtain

(1.1) H�.�nX;E/ D H�cusp.�nX;E/˚
M
¹Pº

H�
¹Pº.�nX;E/:

Each summand indexed by ¹Pº is built up by Eisenstein series (appropriate derivatives or
residues of such) attached to cuspidal automorphic forms on the Levi components of elements
in ¹Pº. Note that an associate class ¹Pº falls into finitely many G.Q/-conjugacy classes.

The role of the theory of Eisenstein series, especially their residues, in describing the
structure of the cohomology H�.�nX;E/ was dealt with by various authors, among them,
Harder [9], Franke [5], J.-S. Li [21], and the author of this paper in [27], [29], [31], or, jointly
with Grbac, in [7], [8]. Nevertheless, the full elucidation of the structure of the Eisenstein
cohomology of such arithmetic quotients is still a major outstanding challenge.

The cohomology H�.�nX;E/ vanishes above the degree given by the cohomological
dimension cd.�/. Therefore it is natural, possibly even technically necessary, to start with
this extreme non-trivial case. It is the aim of this paper, in the case of a congruence sub-
group � of the Q-group G D SLn, to unfold the automorphic view on the cohomology group
H cd.�/.�nX;E/ and to gain some insight into the internal structure of the cohomology in
this top degree. This includes some quantitative results regarding the size of these cohomology
spaces. Note that, by [2, Corollary 11.4.3], cd.�/ D dimX � rk.G/. Therefore, in the case at
issue, we obtain cd.�/ D n.n�1/

2
, because dimX D n.nC1/

2
� 1 and rk.G/ D n � 1.

1.2. With regard to associated classes ¹Pº, we use that the G.Q/-conjugacy classes of
parabolic Q-subgroups of G are in bijection with the subsets J � �Q of the set of simple
roots determined by the Levi decomposition P0 D L0N0 of the parabolic subgroup of upper
triangular matrices where the maximal split torus L0 is the group of diagonal matrices in G
with determinant one. If ei is the projection of L0 to its i th component, then

�Q D ¹˛i D ei � e
�1
iC1 j i D 1; : : : ; n � 1º:
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If PJ D LJNJ is the parabolic Q-subgroup which corresponds to J , the roots of LJ are those
roots whose simple components are in J .

We denote by Jcd the family of non-empty subsets J � �Q D ¹˛1; : : : ; ˛n�1º subject
to the condition that if ˛i ; ˛iC1 2 J , for some i 2 ¹1; : : : ; n � 2º, then ˛iC2 … J . As a con-
sequence of the following result, this family, together with the empty set, eventually describes
the only sources for the possible existence of Eisenstein cohomology classes in the degree of
the cohomological dimension.

Proposition 1.1. Let ¹Pº be an associate class of proper parabolic Q-subgroups of
SLn=Q. If P is neither the class ¹P0º of minimal parabolic Q-subgroups nor P is G.Q/-conju-
gate to a standard parabolic subgroup PJ where the defining set J is an element in Jcd, the
corresponding summandH cd.�/

¹Pº .�nX;E/ in the decomposition (1.1) vanishes in degree cd.�/.

In view of this result, we only have to deal with the summands H cd.�/
¹Pº .�nX;E/ in the

decomposition (1.1) where P is G.Q/-conjugate to a standard parabolic subgroup PJ with
J 2 Jcd, or to P; D P0. As it will turn out, in all these cases, the corresponding summand
does not vanish for a congruence subgroup � of sufficiently high level.

However, here is a more precise result concerning a subfamily of index sets in Jcd.

Theorem 1.2. Let P be a parabolic Q-subgroup of G=Q D SLn=Q, n � 3, whose
G.Q/-conjugacy class is represented by a standard parabolic Q-subgroup PJ indexed by
the set J D ¹˛i1 : : : : ; ˛ir º � �Q, J ¤ ;, subject to the conditions that if ˛i ; j̨ 2 J , then
ji � j j � 2: Given a torsion-free principal congruence subgroup � � G.Q/, the space

H
cd.�/
¹Pº .�nX IC/ D

M
Q2¹Pº=�

H cd.�/.�nX IC/e0.Q/;

generated by regular Eisenstein cohomology classes as constructed for each of the faces e0.Q/,
Q 2 ¹Pº, up to �-conjugacy, is non-trivial and its dimension is given by

dimC H
cd.�/
¹Pº .�nX IC/ D conjGŒ¹Pº� � conj�.P/ � dimC H

cd.�/
cusp .e0.P/IC/;

where conjGŒ¹Pº� D
�
n�r
r

�
and conj�.P/ denotes the number of �-conjugacy classes of P.

Given a prime power q D p� > 2, the number conj�.q/.P/ is determined in Lemma 5.7.
The remaining cases of index sets in Jcd are dealt with in a similar way to a certain extent

in Section 5.2. Finally, in the case of a principal congruence subgroup �.q/, q D p� > 5,
p � 3 a prime, we give lower bounds for the size of these spaces. For certain associate classes
¹Qº there is a precise formula for their dimension.

If ¹Pº D ¹P0º is the associate class of minimal parabolic Q-subgroups of SLn=Q, rep-
resented by the standard parabolic of upper triangular matrices, we have already given a non-
vanishing result for the space H cd.�/

¹P0º .�nX;E/ in the thesis work [25], [26] in the case of the
trivial coefficient system, and in [29, Section 7] in the generic case. This was completed by
giving a lower bound for the dimension of this space. For the sake of completeness, we briefly
review this result in the case E D C in Section 6.

In Section 7, we compare our approach via automorphic forms to the structure of the
top degree cohomology group H cd.�/.�nX;E/ with prior work where one uses the relation
with the Steinberg module and its realization as the reduced cohomology of the Tits building
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attached to SLn=Q. Finally, we indicate how our results can possibly be extended to the special
linear group over a number field or even to other groups than SLn.

Notation and conventions. (1) Let Q be the field of rational numbers. We denote by V
the set of places of Q, and by Vf the set of non-archimedean places. The archimedean place is
denoted by v D1. Let Qv be the completion of Q at v, and Zv the ring of integers of Qv for
v 2 Vf . Let A (resp. I) be the ring of adeles (resp. the group of ideles) of Q. We denote by Af
the finite adeles.

(2) The algebraic groups considered are linear. If H is an algebraic group defined over
a field k, and k0 is a commutative k-algebra, we denote by H.k0/ the group of k0-valued points
of H. If H is a connected Q-group, the group of real points H.R/, endowed with the topology
associated to the one of R, is a real Lie group. We denote its Lie algebra by the corresponding
small gothic letter h.

(3) Given a connected algebraic Q-group G, we put

0G D
\

�2XQ.G//

ker�2;

where XQ.G/ denotes the group of Q-morphisms G! GL1. The group is defined over Q and
normal in G. Any character is trivial on the unipotent radical Ru.G/ of G, and, given any Levi
Q-subgroup L of G, we have

0G D 0L ËRu.G/:

The real Lie group 0G.R/ contains each compact subgroup of G.R/ and each arithmetic
subgroup of G.

2. Arithmetic quotients and their cohomology

Let � be an arithmetically defined subgroup of a connected semi-simple algebraic
Q-group G of positive Q-rank. Then it can be viewed as a discrete subgroup of the real Lie
groupG D G.R/. Given a maximal compact subgroupK � G, the associated symmetric space
is X D G=K on which G, and thus � , acts properly. The arithmetically defined quotient space
�nX is non-compact but has finite volume; it may be interpreted as the interior of a com-
pact orbifold with corners. These finitely many corners are parametrized by the �-conjugacy
classes of proper parabolic Q-subgroups of G. We briefly review this construction and its role
within investigations regarding the cohomology of �nX . In particular, we describe the struc-
ture of such a corner e0.P / as a fibre bundle and its cohomology. The cuspidal cohomology
of e0.P / is the source for the eventual construction of cohomology classes for �nX which are
represented by Eisenstein series or residues of such.

2.1. Parabolic subgroups, Levi subgroups, and roots. Let G be a connected semi-
simple algebraic group defined over Q. We assume that G has Q-rank greater than zero. Fix
a minimal parabolic subgroup P0 of G defined over Q and a Levi subgroup L0 of P0 defined
over Q. By definition, a standard parabolic subgroup P of G is a parabolic subgroup P of
G defined over Q that contains P0. Analogously, a standard Levi subgroup L of G is a Levi
subgroup of any standard parabolic subgroup P of G such that L contains L0. A given standard
parabolic subgroup P of G has a unique standard Levi subgroup L. We denote by P D LPNP
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the corresponding Levi decomposition of P over Q. When the dependency on the parabolic
subgroup is clear from the context we suppress the subscript P from the notation.

Let P be a parabolic Q-subgroup of G, and let N be the unipotent radical of P. We denote
by � W P! P=N DW M the canonical projection of P on the reductive Q-group M. Let SP be
the maximal central Q-split torus of M, and let SP be denote the identity component of SP.R/.
A subgroup A of a Levi subgroup of P D P.R/ such that A is mapped under � isomorphically
on SP is called a split component of P . Note that a Levi subgroup of P is isomorphic via � to
the group of real points M.R/. Two split components of P are conjugate under N D N.R/.

Fix a maximal compact subgroup K of the real Lie group G D G.R/. We denote by AP
the uniquely determined split component of P which is stable under the Cartan involution ‚K
attached to K. Let M D ZG.AP / defined to be the centralizer of AP in G; it is the uniquely
determined ‚-stable Levi subgroup of P . Then we have the decomposition P DM ËN as
a semi-direct product. Analogously we have P D AP � 0P .

The projection � induces a canonical isomorphism � WM ! M.R/; we denote by 0M

the inverse image under � of 0M.R/. Thus, we obtainM D 0M � AP . SinceM is‚K-stable,
we have K \ P D K \ 0M , and K \ P is a maximal compact subgroup of 0M;M , and P .
By definition, the parabolic rank prk(P ) of P is the dimension of AP .

A parabolic pair is defined to be a pair .P;A/which is given by the group of real points P
of a parabolic subgroup P of G together with a split componentA of P . Having fixed a minimal
parabolic Q-subgroup P0 of G, a parabolic pair .P;A/ is called standard if P0 � P , AP � A0
where A0 WD AP0 . A parabolic pair .P;A/ is said to be semi-standard if A � A0.

Let h be a Cartan subalgebra of g which contains a0. We denote byH the corresponding
Cartan subgroupZG.h/ ofG. Letˆ D ˆ.gC; hC/ be the set of roots of gC with respect to hC ,
and let ˆR D ˆR.gC; a0;C/ be the set of R-roots, that is, the set of roots of gC with respect
to a0;C . Occasionally we may view the elements ofˆ (resp.ˆR/ as roots ofG.C/with respect
to H (resp. A0). Given a parabolic pair .P;A/, we denote by ˆ.P;A/ the set of roots of P
with respect to A, and by �.P;A/ the set of simple roots in ˆ.P;A/. Similarly, we will make
no distinction between a character of A and its differential.

Since we have fixed a minimal parabolic Q-subgroup P0 of G, together with the unique
split component A0 of P0 which is‚K-stable, positivity onˆR is determined by the condition
that the set of positive roots ˆCR is equal to ˆ.P0; A0/. We choose an order on ˆ which is
compatible with this order on ˆR, that is, the restriction of a positive element is positive.
Given this order on ˆ, we denote by ˆC (resp. by �) the set of positive roots (resp. simple
roots).

Let .P;A/ be a semi-standard parabolic pair. Then b WD h \0 m is a Cartan subalgebra
of the Lie algebra 0m of 0M , and one has a direct sum decomposition h D b˚ a. We may (and
will) identify a�C (resp. b�C) with the space of linear forms on h which vanish on b (resp. a).
Thus, there is a canonical isomorphism

h�C Š b�C ˚ a�C:

LetˆM D ˆ.mC; hC/ D ˆ.
0mC;bC/ denote the set of roots of mC with respect to hC . Then

we can identify ˆM with the set of roots which vanish on a, and �M D � \ˆM is the set of
simple roots with respect to the order induced by the one on ˆ.

Given a parabolic pair .P;A/, the element �P 2 a� is defined by

�P .a/ D .det Ad.a/jn/
1
2 ; a 2 A;
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where n denotes the Lie algebra of the unipotent radical N of P . As usual, we put

� D
1

2

X
˛2ˆC

˛ and �0M D
1

2

X
˛2ˆ

C

M

˛:

Since the parabolic pair .P;A/ is semi-standard, we see �ja0 D �P0 and �jb D �0M . If .P;A/
is standard, we have �ja D �P .

2.2. Arithmetic quotients and the adjunction of corners. Given a connected semi-
simple algebraic Q-group G of rkQG > 0, the group of real-valued points G D G.R/ is a real
Lie group. Let K be a maximal compact subgroup of G. Since any two of these are conjugate
to one another by an inner automorphism, the homogeneous space G=K D X may be viewed
as the space of maximal compact subgroups of G. The space X is diffeomorphic to Rd.G/,
where d.G/ D dimG � dimK, hence X is contractible.

An arithmetic subgroup � of G is a discrete subgroup of G, and � acts properly dis-
continuously on X . If � is torsion-free, the action is free, and the quotient space �nX is
a smooth manifold of dimension d.G/. Since the underlying algebraic Q-group G has pos-
itive Q-rank, �nX is non-compact but of finite volume. It can be viewed as the interior of
a natural compactification with boundary, the adjunction of corners, due to Borel and Serre [2].

This compactification is obtained as the quotient under � of a G.Q/-equivariant partial
compactification X . The inclusion �nX ! �nX is a homotopy equivalence. The boundary
à.�nX/ is glued together out of faces e0.Q/, where Q ranges over a set of representatives for
the �-conjugacy classes of proper parabolic Q-subgroups of G.

A single face is described by the fibration (induced from the projection � W P! P=N)

(2.1) �N nN ! e0.P / D �P n
0P=K \ P ! �MnZM

over the homogeneous space �MnZM with compact fibres whereZM D .0P=N/=�.K \ P /,
�P D � \ P , �N D � \N , and �M D �.� \ P /. In the sequel we will identify the base
space �MnZM with ��1.�M /n0M=K \M .

2.3. Cohomology. Let .�; E/ be a finite-dimensional irreducible representation of the
real Lie group G on a real or complex vector space; we assume that this representation origi-
nates from an algebraic representation of the algebraic Q-group G. Let .��.X;E/; d/ be the
complex of smooth E-valued differential forms on X . Given an arithmetic torsion-free sub-
group � of G, the singular cohomology H�.�nX; QE/ of the manifold with coefficients in the
local system defined by .�; E/ is canonically isomorphic to the cohomology H�.�.X;E/�/,
the de Rham cohomology.

These latter cohomology groups may be interpreted in terms of relative Lie algebra
cohomology groups. Indeed, let C1.G/ denote the space of C1-functions on G. We endow
C1.G/˝E with the G-module structure given as the tensor product of the right regular rep-
resentation l of G on C1.G/ and of .�; E/. The space C1.G/K of all C1-vectors f for
which f l.K/ is a finite-dimensional subspace of C1.G/ is preserved under the action of the
Lie algebra g, obtained by differentiation of l , and compatible with the action of K. There-
fore, since C1.G/K is locally finite as aK-module, the space ofK-finite vectors C1.G/K is
.g; K/-module. Taking into account the action of the discrete torsion-free group � , there is an
isomorphism of ��.G=K;E/� onto the complex C �.g; K; C1.�nG/K ˝E/, hence there is
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an isomorphism

H�.�nX; QE/ Š H�.��.G=K;E/�/
�
�! H�.g; K; C1.�nG/K ˝E/:

Let L2.�nG/ be the space of square-integrable functions (modulo the center) on �nG,
viewed as usual as a unitary G-module via right-translations. The theory of Eisenstein series
plays a fundamental role in the description of the spectral decomposition of L2.�nG/. This
space is the direct sum of the discrete spectrum L2dis.�nG/, i.e. the span of the irreducible
closed G-submodules of L2.�nG/, and the continuous spectrum L2ct.�nG/. The former space
contains as a G-invariant subspace, the space L2cusp.�nG/ of cuspidal automorphic forms, i.e.
the cuspidal spectrum. The orthogonal complement in L2dis.�nG/ is the residual spectrum, to
be denoted L2res.�nG/, thus, there is a direct sum decomposition

L2dis.�nG/ D L
2
cusp.�nG/˚ L

2
res.�nG/:

The discrete spectrum is a countable Hilbert direct sum of irreducible G-modules with finite
multiplicities, say1)

(2.2) L2dis.�nG/ D
bM
�2 OG

m.�; �/H� :

By the work of Langlands each of the constituents of the residual spectrum L2res.G1=�/

can be structurally described in terms of residues of Eisenstein series attached to irreducible
representations occurring in the discrete spectra of the Levi components of proper parabolic
subgroups of G.

Our object of concern is the cohomology of � with values in E, to be given in terms of
relative Lie algebra cohomology as

H�.�;E/ D H�.�nX; QE/ D H�.g; KIC1.�nG/˝C E/

where C1.�nG/ denotes the space of C1-functions on �nG.2) This cohomology space con-
tains as a natural subspace the square integrable cohomologyH�

.sq/.�;E/, defined as the image
of the homomorphism

jdis W H
�.g; KIL

2;1
dis .�nG/˝E/! H�.g; KIC1.�nG/˝E/

induced in cohomology by the natural inclusion of the space of C1-vectors in the discrete
spectrum of �nG into C1.�nG/. In general, the homomorphism jdis is not injective whereas
the homomorphism induced by the inclusion of the space of C1-vectors in the cuspidal spec-
trum into C1.�nG/ is injective; its image is called the cuspidal cohomology of � , to be
denoted H�cusp.�nX;E/

Given a coefficient systemE, there are, up to infinitesimal equivalence, only finitely many
irreducible unitary representations .�;H�/ with non-zero cohomology H�.g; KIH� ˝C E/.
Thus, the decomposition (2.2) gives rise to a decomposition of the cuspidal cohomology

H�cusp.�nX;E/ Š
M
�2 OG

m.�; �/H�.g; KIH� ˝C E/

as a finite algebraic direct sum.
1) By abuse of notation, we write m.�; �/H� for the direct sum of m.�; �/ copies of H� .
2) For a differentiable G-module F we usually put H�.g; K; F / D H�.g; K; FK/ where FK denotes the

space of K-finite vectors in F , K a maximal compact subgroup in G.
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2.4. Cuspidal cohomology for GLm=Q and SLm=Q. The following proposition (cf.
[28, Theorem 3.3]) is fundamental for a better comprehension of the cuspidal cohomology.

Proposition 2.1. Let � be an arithmetic subgroup of GLm=Q, and fix .�; E/. Up to
infinitesimal equivalence, there is at most one irreducible unitary representation .�;H� / of
GLm.R/ such that the relative Lie algebra cohomologyH�.glm.R/; O.m/IH

1
� ˝E/ ¤ ¹0º,

and .�;H� / occurs with non-zero multiplicity in the cuspidal spectrum of �nGLm.R/. Such
a representation is necessarily tempered.

As a tempered representation .�;H� / has vanishing Lie algebra cohomology outside
a certain range centered around the middle dimension, see [3, Chapter III, Proposition 5.3].
The bounds of this range, depending only on m, are determined in [28, Proposition 3.5]. We
only need the upper bound which is given as follows:

vo.m/ WD

8<:
.mC1/2�1

4
� 1 if m even,

.mC1/2

4
� 1 if m odd:

We observe that for m > 3 the cohomological dimension m.m�1/
2

of an arithmetic group in
GLm.Q/ is always larger than vo.m/. For m D 2; 3, we have equality.

An analogous results holds in the case of the group SL˙n .R/, and, with a slight mod-
ification regarding the number of irreducible unitary representations which are cuspidal and
cohomological, for the group SLn (see [28, Proposition 3.5.]).

Remark 2.2. When m � 3, the group SLm has the congruence subgroup property.
Therefore, we can infer from the adelic result of Franke and the preceding discussion, that, for
m > 3, there is no cuspidal cohomology in degree cd.�/ D m.m�1/

2
, thus, the total cohomology

in this degree comes from the faces in the Borel-Serre compactification. Which ones actually
contribute is determined later on.

Example 2.3. We consider the case of the group GL2.R/, that is, m D 2. Let V.r/,
r � 2, denote the irreducible two-dimensional representation of the orthogonal group O.2/
which is fully induced by the character k� 7! eir� of the subgroup SO.2/ of rotations k� ,
� 2 Œ0; 2��, in O.2/ of index two. Given an integer ` � 2, we denote by D` the discrete
series representation of GL.2;R/ of lowest O.2/-type V.`/. The representation D` is square-
integrable and characterized by the fact that its restriction to the maximal compact subgroup
O.2/ of GL.2;R/ decomposes as an algebraic sum of the form

D`jO.2/ Š
M
r2†.`/

V.r/; †.`/ D ¹l 2 Z j l � ` mod 2; l � `º:

In this labelling of the discrete series representations of GL.2;R/ the Harish-Chandra
parameter of D`, ` � 2, is ` � 1.

Let .�k; Fk/, k � 0; be the irreducible finite-dimensional representation of GL.2;R/
which originates from the algebraic representation of GL.2;Q/ of highest weight �k D k � !
(where ! denotes the fundamental dominant weight of GL.2;Q/), thus, dimFk D k C 1. The
cohomology H�.gl2.R/; O.2/ID` ˝ Fk/ vanishes if k ¤ ` � 2 since the infinitesimal char-
acter �D` differs from the one of the contragredient representation of .�k; Fk/. In the case
k D ` � 2 one has H q.gl2.R/; O.2/ID` ˝ F`�2/ D C for q D 1; it vanishes otherwise.
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2.5. Cohomology of a face e0.P/ in the boundary of �nX . Let e0.P /, P 2 P , P ¤ G
be a single face in the boundary à.�nX/. The spectral sequence in cohomology associated to
the fibration (2.1) of e0.P / degenerates at E2 (see [27, Theorem 2.7]). The de Rham cohomol-
ogy spaces of the fiber �N nN can be identified with the Lie algebra cohomology H�.n; E/
of the Lie algebra n of N . This latter cohomology space carries a natural structure as an
M -module; its restriction to �M coincides with the natural action of �M on the cohomology
of the fiber. This gives rise to the identification

H�.e0.P /; E/ Š H�.�MnZM ;H
�.n; E//:

This cohomology space contains the cuspidal cohomology of the face as a natural subspace.
Using the interpretation in terms of relative Lie algebra cohomology, it is defined to be

(2.3) H�cusp.�MnZM ;H
�.n; E// WD

M
.�;H� /

H�.0m; KM IV� ˝H
�.n; E//

where V� denotes the �-isotypic component of the space of cusp forms for �MnZM for a given
irreducible unitary representation .�;H�/ in the unitary dual of 0M .

Following Kostant ([13, Theorem. 5.14]), the Lie algebra cohomology H�.n; E/ of n

with coefficients in the irreducible representation .�; E/ of G is given as a M --module as
the sum

(2.4) H�.n; E/ D
M
w2W P

F�w ;

where the sum ranges over w in the set W P of the minimal coset representatives for the left
cosets of the Weyl group W D W.gC; hC/ modulo the Weyl group

WP D W.mC; hC/ D W.
0mC;bC/

of the Levi factor M of P . The letter F�w in (2.4) denotes the irreducible finite-dimensional
M.C/-module of highest weight

�w D w.ƒC �P0/ � �P0 ;

whereƒ 2 LaP0;C is the highest weight of .�; E/. The weights �w are all dominant and distinct
and, given a fixed degree q, only the weights �w with length `.w/ D q occur in the decom-
position of H q.n; E/ into irreducibles. As usual, the length of w 2 W is meant with respect
to the set of simple reflections w˛ 2 W;˛ 2 �. The set W P can also be described as the set
¹w 2 W j w�1.�M / � ˆ

Cº.
Since M is the direct product AP � 0M of the split component AP and 0M , it follows

that the module F�w , viewed as 0M -module, is irreducible. With respect to the AP -action, we
get the analogue of the decomposition (2.4) where F�w is viewed as an AP -module of highest
weight �w jaP .

Definition 2.4. Let Œ�� be a non-trivial cohomology class in H�.�MnZM ;H�.n; E//
represented by a differential form � 2 ��.�MnZM ;H

�.n; E//. We say that Œ�� is a class of
weight � 2 a�P if Œ�� 2 H�.�MnZM ; F�/

Merging this decomposition ofH�.n;E/ as an 0M -module and the decomposition (2.3)
of the cuspidal cohomologyH�cusp.e

0.P /; E/ of the face e0.P /, we obtain the following decom-
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position of the latter as a finite algebraic direct sum:

(2.5) H�cusp.�MnZM ;H
�.n; E// D

M
.�;H� /

M
w2W P

H�.0m; KM IV� ˝ F�w /:

As in [27, Section 3.2], this decomposition gives rise to the following essential concept.

Definition 2.5. Let Œ�� be a non-trivial cohomology class inH�cusp.�MnZM ;H
�.n;E//

represented by a differential form � 2 ��.�MnZM ;H
�.n; E//. We say that Œ�� is a class of

type .�;w/ if there exist an irreducible unitary representation � of 0M which occurs in the
cuspidal spectrum of �Mn0M and w 2 W P such that via the identification in equation (2.5)
Œ�� 2 H�.0m; KM IV� ˝ F�w /.

If the infinitesimal character �� of � does not coincide with the infinitesimal character
of the representation contragredient to F�w , the cohomology space H�.0m; KM IV� ˝ F�w /
vanishes, that is, there are no classes of type .�;w/. If the module F�w is not isomorphic to its
complex conjugate contragredientF

�

�w
, the Lie algebra cohomologyH�.0m;KM IV�˝F�w /

vanishes, since this condition implies that the complex contragredient of F�w and V� have
distinct infinitesimal character.

3. Eisenstein cohomology classes

We review how the theory of Eisenstein series can be used to construct certain cohomol-
ogy classes in H�.�nX IE/ which are represented by a regular value of a suitable Eisenstein
series attached to cuspidal cohomology classes inH�cusp.e

0.P /; E/. In this section and the sub-
sequent ones we have to assume some familiarity with the theory of Eisenstein series as given
in Langlands [17] and Harish-Chandra [11] and the general results regarding the construction
carried through in [25], [27], and [29].

3.1. The construction. Let Œ�� 2 H�cusp.e
0.P /; E/ D H�cusp.�MnZM ;H

�.n; E// be a
non-trivial cohomology class of type .�;w/, .� 2 0 OM;w 2 W P /, represented by a differen-
tial form � 2 ��.�MnZM ;H

�.n; E//. Following [27, Chapter 4], we associate to � via the
differential form �� D �a

�C� in ��.�P nX;E/ the Eisenstein series

E.�; �/ WD
X
�P n�

 ı ��:

This Eisenstein series is first defined for all � in .a�C/
C D ¹� 2 a�C j Re� 2 �P C .a�/Cº,

where .a�/C D ¹� 2 a� j .�; ˛/ > 0 for all ˛ 2 �.P;A/º and is holomorphic in that region.
Via analytic continuation it admits a meromorphic continuation to all of a�C . We fix �0 2 a�C .
If the Eisenstein series E.�; �/ is holomorphic at this point, then E.�; �0/ is an E-valued,
�-invariant differential form on X . The following result [27, Theorem 4.11.] is decisive for the
construction of Eisenstein cohomology classes.

Theorem 3.1. Let P be a proper parabolic Q-subgroup of G, and letAP be the uniquely
determined split component of P D P.R/ which is stable under the Cartan involution‚K . Let
Œ�� be a non-trivial cohomology class in H�cusp.e

0.P /; E/ D H�cusp.�MnZM ;H
�.n; E// of
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type .�;w/, with � an irreducible unitary representation occurring in the cuspidal spectrum
of �Mn0M and w 2 W P , represented by a differential form � 2 ��.�MnZM ;H

�.n; E//.
If the Eisenstein series E.�; �/ assigned to Œ�� is holomorphic at the point

�0 D �w.ƒC �/jaP

(which is real and uniquely determined by Œ��), then E.�; �0/ is a closed harmonic differential
form on �nX and represents a non-trivial cohomology class ŒE.�; �0/� in H�.�nX;E/. We
call such a cohomology class a regular Eisenstein cohomology class.

3.2. Restriction maps – The constant term. Given a proper parabolic Q-subgroup Q
of G, the image of a cohomology class ŒE.�; �0/� under the restriction map

r�Q W H
�.�nX;E/! H�.e0.Q/;E/

is given by ŒE.�; �0/Q�je0.Q/, that is, equals the restriction to e0.Q/ of the constant Fourier
coefficient E.�; �0/Q 2 ��.�QnX;E/ of E.�; �0/ along the parabolic Q (see [27, Proposi-
tion 1. 10]). This result is already used in proving the non-vanishing of the class ŒE.�; �0/�. In
fact, one shows ŒE.�; �0/P �je0.P / D Œ�� ¤ 0:

For later use, we have to recall the following case where the notion of associate parabolic
subgroups plays a role. Let P;Q be two parabolic Q-subgroups of G, and letAP ; AQ be the cor-
responding ‚K-stable split components. We denote by W.AP ; AQ/ the set of isomorphisms
AP

�
�! AQ which are induced by those inner automorphism of G.Q/ defining a Q-rational

isomorphism MP
�
�!MQ. Equivalently, the split components AP and AQ are conjugate in G

under an element in G.Q/. We say that P and Q are associate if W.AP ; AQ/ ¤ ;. The notion
of being associated defines an equivalence relation on the set of parabolic Q-subgroups G.
Let C be the set of classes of associate parabolic Q-subgroups of G. Note that the mini-
mal parabolic Q-subgroups form one class ¹P0º 2 C , represented by the standard minimal
parabolic Q-subgroup P0.

Now suppose that the parabolic Q-subgroups P and Q are in the same associate class.
Then we have

r�Q.ŒE.�; �0/�/ D
X

s2W.AP ;AQ/

Œc.s; �0/s�0.��0/�je0.Q/;

where c.s; �0/s�0 W �
�.�P nX;E/! ��.�QnX;E/ is a certain “intertwining” operator de-

fined in [27, Section 4.10]. The cohomology class Œc.s; �0/s�0.��0/�je0.Q/ in H�cusp.e
0.Q/;E/

is a class of weight vs.ƒC �/ � �jaQ , where vs 2 W Q is a uniquely determined element with

vs.ƒC �/ � �jaQ C s�0 D 0 and �s� D ��vs.ƒC�/jbQ;C
:

The latter equation refers to an equality for the infinitesimal character of the representation s�
of 0MQ obtained from the representation � of 0MP under the twist induced by the element
s 2 W.AP ; AQ/.

4. The case SLn=Q – The faces which matter

Now we consider the Q-split simple simply connected special linear Q-group G D SLn
of Q-rank n � 1, where n � 2. We fix the maximal compact subgroup K D SO.n/ in the real
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Lie group G D SLn.R/. The symmetric space X associated to G has dimension

d.SLn/ D
.n � 1/.nC 2/

2
:

Given an arithmetic torsion-free subgroup � of SLn.Q/, in the following sections, we study the
construction of Eisenstein cohomology classes in the cohomology H�.�nX IE/ in the degree
given by the cohomological dimension cd.�/ D n.n�1/

2
. By the very definition of this notion,

we have H r.�nX IE/ D ¹0º for r > cd.�/.
In this section, we determine which classes ¹Pº of associate parabolic Q-subgroups of

G D SLn may contribute to the Eisenstein cohomology in the decomposition (1.1) in Section 1.

4.1. Let P0 be in SLn=Q the minimal parabolic Q-subgroup of upper triangular matri-
ces, and P0 D L0N0 its Levi decomposition where N0 is the unipotent radical. The maximal
split torus L0 is given as the group ¹diag.t1; : : : ; tn/ DW t 2 SLn.Q/º of diagonal matrices with
determinant one.

Let ˆQ, ˆCQ, �Q denote the corresponding sets of roots, positive roots, simple roots,
respectively. We may (and will) identify ˆQ and ˆR resp. ˆ. If ei is the projection of L0 to its
i th component, then �Q D ¹˛i D ei � e

�1
iC1 j i D 1; : : : ; n � 1º.

The conjugacy classes of parabolic Q-subgroups of SLn are in bijection with the subsets
of the set�Q of simple roots. Each of the following standard parabolic Q-subgroups represents
a SLn.Q/-conjugacy class. Given J � �Q, let SJ D .

T
˛2J Ker.˛//ı be the corresponding

subtorus in L0. We denote by PJ the corresponding parabolic Q-subgroup containing P0,
defined to be PJ D LJNJ , where LJ is the Levi factor, i.e. the centralizer of SJ , and NJ is
the unipotent radical. The characters of L0 in the Lie algebra of Nj are the positive roots which
contain at least one simple root outside of J . The roots of LJ are those roots whose simple
components are in J . Evidently, P; D P0 and P�Q D SLn, and, given two subsets I; J � �,
where I � J , then PI � PJ . Moreover, PI \ PJ D PI\J .

4.2. A choice of faces in the adjunction of corners. We are interested to construct
non-vanishing classes in the degree given by the cohomological dimension cd.�/ of � , that is,
in the highest possible degree in which cohomology may exist at all. Thus, being interested in
Eisenstein cohomology classes, we have to determine for which proper parabolic subgroups P,
up to �-conjugacy, the corresponding cuspidal cohomology groups H cd.�/

cusp .e0.P /; E/ are
non-zero in this degree. However, in most cases, these groups are zero. This is a consequence
of the vanishing result (2.4) concerning the cuspidal cohomology for arithmetic subgroups in
some GLm=Q in degrees outside a certain range centered around the middle dimension.

The following proper parabolic Q-subgroups will be at our disposal for the envisaged
construction:

First, say case .I/, a minimal parabolic Q-subgroup B (also called Borel subgroup) is
G.Q/-conjugate to the standard minimal parabolic Q-subgroup P0 D P;. The corresponding
set W B of minimal coset representatives coincides with the Weyl group W , and the longest
element wB in W has length

`.wB/ D dimN0 D
n.n � 1/

2
D cd.�/:

Thus, we have F�wB D H
cd.�/.n0; E/.
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Second, labelled case .II/, denote by Jcd the family of non-empty sets J � �Q subject
to the condition that if ˛i ; ˛iC1 2 J , with i 2 ¹1; : : : ; n � 2º, then ˛iC2 … J . The correspond-
ing standard parabolic subgroup PJ presents itself as the stabilizer within SLn of the flag
Vi1 ¨ Vi2 ¨ � � � ¨ Vir where the tuple .i1; i2; : : : ; ir/ is given by the set of indices in ascend-
ing order of the simple roots in the complement CJ of J in �Q. Given 1 � s � n � 1, Vs is
defined to be Qf1 CQf2 C � � � CQfs with regard to the standard basis of Qn. This condi-
tion assures that only blocks of size one, two or three make up the Levi subgroup of PJ . In the
latter two cases, the upper bound vo.m/ of the range in which the group GLm has possible non-
vanishing cuspidal cohomology classes coincides with m.m�1/

2
when m D 2; 3. Consequently,

adding up this upper bound over all blocks of size two or three, we getX
2-blocks

vo.2/C
X

3-blocks

vo.3/C dimNJ D cd.�/:

By definition, the case .II/ comprises all parabolic Q-subgroups which are G.Q/-conjugate to
a standard parabolic subgroup PJ with J 2 Jcd. Cases .I/ and .II/ of proper parabolic Q-sub-
groups exhaust, up to �-conjugacy, all possible sources of Eisenstein cohomology classes of
degree cd.�/. This follows from the fact that, if a block of size m � 4 occurs as a factor in the
Levi subgroup of a parabolic Q-subgroup Q, the bound vo.m/ is smaller than m.m�1/

2
, thus, the

cuspidal cohomology group H cd.�/
cusp .e0.Q/;E/ of the face e0.Q/ is zero. Therefore we obtain:

Proposition 4.1. Let ¹P º be an associate class of proper parabolic Q-subgroups of the
group SLn=Q. If P is neither a minimal parabolic Q-subgroup nor P is G.Q/-conjugate to
a standard parabolic subgroup PJ where the defining set J � �Q is an element of Jcd, then
the summand H cd.�/

¹Pº .�nX;E/ in the decomposition (1.1) vanishes in degree cd.�/.

5. Construction of Eisenstein cohomology classes – Case (II)

In this section we carry through the construction of non-vanishing cohomology classes
in the top cohomology H cd.�/.�nX IE/ which originate from faces e0.Q/ where the asso-
ciate class of the corresponding parabolic Q-subgroup falls into case .II/. The main result is
Theorem 5.6.

5.1. Block-2 parabolic subgroups of G. For the sake of clarity we first deal with the
following specific family of parabolic Q-subgroups belonging to case .II/. Let

J D ¹˛i1 : : : : ; ˛ir º � �Q

be a non-empty set of simple roots of SLn=Q subject to the conditions that if ˛i ; j̨ 2 J , then
ji � j j � 2, and let PJ be the corresponding parabolic Q-subgroup of G=Q D SLn=Q. The
parabolic rank of PJ equals .n�1/�r . Observe that the blocks in the Levi subgroup of PJ can
only have size one or two, and at least one block of size two occurs. Therefore we call a para-
bolic Q-subgroup PJ where J satisfies this condition a block-2 parabolic Q-subgroup of G.

We give two examples: First, we suppose that n D 2m is even, and n � 4. We take the
set J D ¹˛1; ˛3; : : : ; ˛n�3; ˛n�1º: Then the Levi subgroup LJ of the corresponding parabolic
Q-subgroup PJ is given via “diagonal matrices” as

LJ D ¹diag.A1; A3; : : : ; An�3; An�1/ 2 SLn.Q/ j Ai 2 GL2.Q/º:
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The parabolic rank of PJ is n
2

. Second, let n � 3, and take J 0 D ¹ j̨ º for any simple root
in �Q. The Levi subgroup of the corresponding parabolic Q-subgroup PJ 0 is given as

LJ 0 D ¹diag.a1; : : : ; aj�1; A; ajC2; : : : ; an/ 2 SLn.Q/ j A 2 GL2.Q/; ai 2 GL1.Q/º:

Theorem 5.1. Given n� 3, let P D PJ be the parabolic Q-subgroup of SLn=Q defined
by the non-empty set J D ¹˛i1 : : : : ; ˛ir º � �Q subject to the conditions that if ˛i ; j̨ 2 J , then
ji � j j � 2: Given an arithmetic torsion-free subgroup � � SLn.Q/, and a rational finite-
dimensional representation .�; E/ of SLn.R/ of highest weightƒ, let Œ�� 2 H cd.�/

cusp .e0.P /; E/,
Œ�� ¤ 0, be a cuspidal cohomology class of type .�;wPJ /, where � is an irreducible unitary
representation of 0MJ and wPJ denotes the longest element in W PJ . Then the Eisenstein
series E.�; �/ attached to the differential form � is holomorphic in �0 D �wPJ .ƒC �/jaJ ,
and ŒE.�; �0/� is a non-zero class in H cd.�/.�nX;E/ which is represented by the closed,
harmonic differential form E.�; �0/.

Proof. As stated in Theorem 3.1, the point in question �0 D �wPJ .ƒC �/jaPJ is real
valued. Let wG be the longest element in W , and wM the longest element in WPJ ; we have

`.wG/ D jˆ
C
j and `.wM / D jˆ

C

M j:

The product wPJ D wM � wG has length `.wG/ � `.wM / D dimNP , and wPJ is the longest
element in the set W P of minimal coset representatives for the cosets WMnWG . Since WM
acts trivially on aPJ , we obtain �0 D �wG.ƒC �/jaPJ . The highest weight ƒ of .�; E/ is
transferred under �wG into the highest weight Qƒ of the representation which is contragredient
to .�; E/. In particular, we have �wG.�/ D �. Therefore we obtain

�0 D QƒC �jaPJ
:

The highest weight Qƒ is dominant because ƒ is dominant. Thus we have the estimate

(5.1) .�0; ˛/ D . QƒjaPJ
; ˛/C .�jaPJ

; ˛/ � .�PJ ; ˛/ for all ˛ 2 �.PJ ; APJ /:

For the sake of simplicity, since the parabolic group PJ is fixed, we now write a instead
of aPJ . The region of absolute convergence of the Eisenstein series E.�; �/ is given as

.a�C/
C
D ¹� 2 a�C j Re� 2 �P C .a�/Cº;

where .a�/C D ¹� 2 a� j .�; ˛/ > 0 for all ˛ 2 �.P;A/º. The Eisenstein series is holomor-
phic there and admits a meromorphic continuation to all of a�C .

Suppose that the Eisenstein series E.�; �/ has a pole at �0. Given the data .PJ ; �; �0/,
the corresponding Langlands quotient JPJ ;�;�0 would carry as a .sln.R/;KR/-module a uni-
tary structure. Note that PJ ¤ P0 and that the tempered representation � is not the trivial
representation. Therefore, using a criterion, due to Wallach (see [3, Chapter IV, Theorem 5.2]
resp. [32, Theorem 6.2]), this implies

�PJ .a/ > Re�0.a/

for all a 2 C`.aC/ D ¹a 2 a j ˇ.a/ � 0; ˇ 2 �.PJ ; APJ /º. However, this contradicts (5.1).
Therefore, the Eisenstein series E.�; �/ is holomorphic at the point �0 D �wPJ .ƒC �/jaPJ .
Then Theorem 3.1 implies the claim.

We define H cd.�/.�nX IE/e0.P / to be the subspace of H cd.�/.�nX;E/ which is gen-
erated by all non-zero Eisenstein cohomology classes ŒE.�; �0/� where Œ�� ranges over all
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non-zero cuspidal classes in H cd.�/�`.wP /.�MnZM ; F�wP /. We are interested in the relation
of this space to analogous spaces attached to a different parabolic Q-subgroup which is not
�-conjugate to P. The theory of Eisenstein series, in particular, the properties of the constant
terms of a given Eisenstein series, require to group together the various contributions originat-
ing from faces e0.P /, where, up to �-conjugacy, P ranges over the finitely many elements in
a given associate class ¹Qº 2 C of parabolic subgroups.

We retain the notation and assumptions of Theorem 5.1. Suppose that ŒE.�; �0/� is a non-
zero class in H cd.�/.�nX;E/ which is represented by the closed, harmonic differential form
E.�; �0/ and originates from a non-zero cuspidal cohomology class Œ�� in H�cusp.e

0.P /; E/ of
type .�;wPJ / where � is an irreducible unitary representation of 0MJ and wPJ denotes the
longest element in W PJ . Let Q be a proper parabolic Q-subgroup of G. If prk.Q/ > prk.PJ /
or if prk.Q/ D prk.PJ / and Q and PJ are not associate to one another, then the constant
Fourier coefficientE.�; �/Q alongQ vanishes identically (see [11, Corollary 2 of Lemma 33]).
Therefore, we obtain ŒE.�; �0/Q�je0.Q/ D .0/.

Now we consider the case that the parabolic Q-subgroup Q is associated to the standard
parabolic PJ we started with. The following assertion concerning the associate class of a given
block-2 parabolic subgroup PJ is a simple observation, based on interpreting an element in LJ
as a diagonal matrix with block entries of size at most two.

Lemma 5.2. Let PJ and PJ 0 be two block-2 parabolic Q-subgroups of G such that
jJ j D jJ 0j, that is, the number of blocks of size two in the corresponding Levi subgroups is the
same, then PJ and PJ 0 are in the same associate class.

In particular, if there exists J 0 ¤ J , with jJ j D jJ 0j, we see that the associate class ¹PJ º
contains parabolic Q-subgroups which are not G.Q/-conjugate to PJ . This is already the case
if n D 3, and J D ¹˛1º, J 0 D ¹˛2º.

Theorem 5.3. Let ŒE.�; �0/� be a non-zero class in H cd.�/.�nX;E/ which is repre-
sented by the closed, harmonic differential formE.�; �0/ and which originates with a non-zero
cuspidal cohomology class Œ�� in H�cusp.e

0.PJ /; E/ of type .�;wPJ / where � is an irreduc-
ible unitary representation of 0MJ and wPJ denotes the longest element in W PJ . Let Q be
a proper parabolic Q-subgroup of G. We suppose that Q is associate to PJ but Q and PJ are
not �-conjugate. Then

r
cd.�/
Q .ŒE.�; �0/�/ D 0:

Proof. Since the parabolic subgroups PJ and Q are in the same associate class, we have
(cf. Section 3)

r�Q.ŒE.�; �0/�/ D
X

s2W.APJ ;AQ/

Œc.s; �0/s�0.��0/�je0.Q/;

where c.s; �0/s�0 W �
�.�PJ nX;E/! ��.�QnX;E/ is a certain “intertwining” operator de-

fined in [27, Section 4.10]. It arises from the corresponding intertwining operator which occurs
in the constant Fourier coefficient of the Eisenstein series in question along the parabolic Q.

First, we consider the case that Q is conjugate under G.Q/ to PJ . Thus, there is g 2 G.Q/
with PgJ D Q and AgJ D AQ is a split component of Q, and W.APJ ; AQ/ is non-trivial. Let
s 2 W.APJ ; AQ/. Using [11, Lemma 106 and its Corollary] (see also [17, Lemma 4.5 (ii)]),
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the intertwining operator is identically zero unless Q is conjugate under � to PJ . However, this
case is excluded by our assumption.

Second, we consider the case that Q 2 ¹PJ º but Q is not conjugate under G.Q/ to PJ .
Then there is a subset J 0 � �Q, J 0 ¤ J with jJ 0j D jJ j, such that Q is conjugate under G.Q/
to PJ 0 . We may assume Q D PJ 0 , and, for the sake of simplicity, we write P D PJ . Recall that
both parabolic Q-subgroups Q and P are block-2 parabolics.

Given an element s 2 W.AP ; AQ/, the cohomology class Œc.s; �0/s�0.��0/�je0.Q/ in
H�cusp.e

0.Q/;E/ is a class of weight vs.ƒC �/ � �jaQ , where vs 2 W Q is a uniquely deter-
mined element with

vs.ƒC �/ � �jaQ C s�0 D 0 and �s� D ��vs.ƒC�/jbQ;C
:

A straightforward computation shows that the only element in W Q which can satisfy
the former condition is vs D 1; see [27, pp. 128–129], for a specific case. Note that the corre-
sponding cohomology class Œc.s; �0/s�0.��0/�je0.Q/ is a class of degree cd.�/, that is, it is an
element in

H cd.�/
cusp .e0.Q/;E/ D H

cd.�/�`.wQ/
cusp .�MnZM ; F�wQ /:

Since
.�wQ/jaQ D wQ.ƒC �/ � �jaQ ¤ ƒjaQ ;

there is no non-trivial class of the required weight. Consequently, rcd.�/
Q .ŒE.�; �0/� D 0.

Let J D ¹˛i1 ; : : : ; ˛ir º � �Q be a non-empty set of simple roots subject to the condi-
tions that if ˛i ; j̨ 2 J , then ji�j j � 2, and let PJ be the corresponding parabolic Q-subgroup
of G=Q D SLn=Q. The parabolic rank of PJ is equal to .n � 1/ � r . Let ¹PJ º be the corre-
sponding associate class of parabolic Q-subgroups of G. By Lemma 5.2, the class ¹PJ º consists
of all parabolic Q-subgroups PJ 0 of G and their G.Q/-conjugates, where jJ 0j D jJ j and PJ 0
is a block-2 parabolic.

Given an arithmetic torsion-free subgroup � � G.Q/, the �-conjugacy classes of ele-
ments in ¹PJ º are in one-to-one correspondence to the faces e0.Q/ in à.�nX/, where Q
ranges over a set of representatives for ¹PJ º=� . Given such a representative, say a parabolic
Q-subgroup Q, using the construction in Theorem 5.1, there is a corresponding subspace
H cd.�/.�nX IE/e0.Q/ of non-zero Eisenstein cohomology classes ŒE.�;�0/�, where Œ�� ranges
over all non-zero cuspidal classes in H cd.�/�`.wQ/.�MnZM ; F�wQ /.

Let Q and R be representatives of two different �-conjugacy classes in ¹PJ º. Then Theo-
rem 5.3 implies that the intersection of the corresponding spaces of Eisenstein cohomology
classes

H cd.�/.�nX IE/e0.Q/ \H
cd.�/.�nX IE/e0.R/ D ¹0º

is trivial. Therefore, the subspaceH cd.�/
¹PJ º

.�nX IE/ of Eisenstein cohomology classes originat-
ing from the faces e0.Q/ where Q ranges of the �-conjugacy classes in ¹PJ º is the finite direct
sum

(5.2) H
cd.�/
¹PJ º

.�nX IE/ D
M

Q2¹PJ º=�

H cd.�/.�nX IE/e0.Q/:

Clearly, this space is generated by regular Eisenstein cohomology classes. If at least
one of the origins H cd.�/

cusp .e0.Q/;E/, Q 2 ¹PJ º, is non-zero, then also the total subspace
H

cd.�/
¹PJ º

.�nX IE/ is non-zero.



Schwermer, Eisenstein series and the top degree cohomology of arithmetic groups 143

The decomposition of the latter space, as exhibited in (5.2), can be simplified by subdi-
viding the set ¹PJ º=� which parametrizes the individual summands. To simplify matters, we
now assume that the coefficient system is given by the trivial representation.

If two parabolic Q-subgroups Q and R of G are conjugate under G.Q/, then they lie
in the same associate class. Evidently, the converse is not correct. Thus, a given associate
class ¹Qº of parabolic Q-subgroups of G falls into a finite number of G.Q/-conjugacy classes.
Given an arithmetic subgroup � � G, each of these G.Q/-conjugacy classes decomposes into
a finite set of �-conjugacy classes. In the case of the previously considered block-2 parabolic
Q-subgroups we have the following result regarding the number of G.Q/-conjugacy classes
within an associate class ¹Qº.

Lemma 5.4. Let P be a parabolic Q-subgroup of G=Q D SLn=Q, where n � 3, whose
G.Q/-conjugacy class is represented by a standard parabolic Q-subgroup PJ indexed by the
set J D ¹˛i1 ; : : : ; ˛ir º � �Q, with J ¤ ;, subject to the conditions that if ˛i ; j̨ 2 J , then
ji � j j � 2: Let conjGŒ¹Pº� denote the number of G.Q/-conjugacy classes of parabolic Q-sub-
groups in the associate class ¹Pº. Then we have

conjGŒ¹Pº� D

 
n � r

r

!
:

Proof.3) By Lemma 5.2, this problem amounts to determine the cardinality of the family
A of subsets I � �Q which are subject to the analogous conditions as J and jJ j D jI j. Con-
sider the set A D ¹1; : : : ; n � 1º of indices of the elements in �Q. Given a subset T � A, we
enumerate its elements in increasing order

1 � t1 < t2 < � � � < tr � n � 1:

Since the given conditions are read as ti > ti�1 C 1, where i D 1; : : : ; r , we can transform this
sequence into the sequence

1 � t1 < t2 � 1 < � � � < tr � .r � 1/ � n � 1 � .r � 1/ D n � r:

Conversely, given a sequence 1 � c1 < c2 < � � � < cr � n � r , we can define an increasing
sequence

1 � c1 < c2 C 1 < � � � < cr C .r � 1/ � n � r C .r � 1/ D n � 1;

which is subject to the conditions as given. Therefore, there is a one-to-one correspondence
between the elements in A and the family of subsets C of ¹1; : : : ; n � rº with r elements.
Thus, the cardinality of A equals

�
n�r
r

�
.

Proposition 5.5. Let P be a parabolic Q-subgroup of G=Q D SLn=Q, n � 3, whose
G.Q/-conjugacy class is represented by a standard parabolic Q-subgroup PJ determined by
the non-empty set J D ¹˛i1 : : : : ; ˛ir º � �Q, subject to the conditions that if ˛i ; j̨ 2 J , then
ji � j j � 2: Let � D �.m/ � G.Q/ be a principal congruence subgroup, m � 5. Then the
cuspidal cohomology

H cd.�/
cusp .e0.PJ /;C/ D H

cd.�/�`.wPJ /
cusp .�MnZM ; F�wPJ

/ ¤ ¹0º

does not vanish.
3) I thank M. Fulmek for suggesting the combinatorial skeleton of this proof.
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Proof. Without loss of generality we may assume that P D PJ . First, consider the case
where J consists of one simple root, say j̨ 2 �Q. Then

0M D ¹diag.˙1; : : : ; A; : : : ;˙1/ j A 2 SL˙.R/º:

Consequently, since F�wPJ Š C and `.wPJ / D cd.�/ � 1, we obtain

H cd.�/
cusp .e0.PJ /;C/ D H

cd.�/�`.wPJ /
cusp .�MnZM ;C/ Š H

1
cusp.�MnXM ;C/:

The latter space is described in terms of relative Lie algebra cohomology groups by

H 1
cusp.�MnZM ;C/ D

M
.�;H� /

H 1.0m; KM IV� ˝ F�w /;

where V� denotes the isotypic component of the irreducible unitary representation .�;H�/
as it occurs in the cuspidal spectrum. The only .0m; KM /-module which can possibly con-
tribute to the right-hand side is the irreducible unitary representation which arises from the
discrete series representation D2 of the block SL˙2 .R/ in 0M . The multiplicity with which
it occurs in the cuspidal spectrum is, via the Eichler–Shimura isomorphism, equal the dimen-
sion 2 � dimC.S2.�.m//, where S2.�.m// denotes the space of cuspidal automorphic forms
of weight two with respect to the congruence group�.m/ of SL2. For a givenm > 5 this space
is non-zero.

Second, in the case where jJ j D r > 1, PJ is a parabolic Q-subgroup whose Levi com-
ponent LJ is isomorphic, up to finite index, to a direct product of r copies of GL2=Q. On
the real points GL2.R/ of each of these copies we take the discrete series representation D2
of GL2.R/. This gives rise to a representation � of 0MJ , and we have

H r.0m; KM ; V� ˝C/ ¤ ¹0º:

Using the previous step, there exist non-zero cuspidal cohomology classes

Œ�� 2 H cd.�/
cusp .e0.PJ /;C/ D H

cd.�/�`.wPJ /
cusp .�MnZM ;C/:

Let P be a proper parabolic Q-subgroup of G. If � � SLn.Z/ is a subgroup of finite
index, the G.Q/-conjugacy class of parabolic Q-subgroups of G determined by P falls into a
finite set of �-conjugacy classes. We denote its cardinality by conj�.P/.

Theorem 5.6. Let P be a parabolic Q-subgroup of G=Q D SLn=Q, n � 3, whose
G.Q/-conjugacy class is represented by a standard parabolic Q-subgroup PJ indexed by the
set J D ¹˛i1 : : : : ; ˛ir º � �Q, with J ¤ ;, subject to the conditions that if ˛i ; j̨ 2 J , then
ji � j j � 2: Given a torsion-free principal congruence subgroup � D �.m/ � G.Q/, m > 5,
the space

H
cd.�/
¹Pº .�nX IC/ D

M
Q2¹Pº=�

H cd.�/.�nX IC/e0.Q/;

generated by Eisenstein cohomology classes as constructed in Theorem 5.1 for each of the
faces e0.Q/;Q 2 ¹Pº, is non-trivial, and its dimension is given by

dimC H
cd.�/
¹Pº .�nX IC/ D conjGŒ¹Pº� � conj�.P/ � dimC H

cd.�/
cusp .e0.P/;C/

where conjGŒ¹Pº� D
�
n�r
r

�
.



Schwermer, Eisenstein series and the top degree cohomology of arithmetic groups 145

Proof. Let PJ 0 be a standard parabolic Q-subgroup which belongs to the associate
class ¹Pº. Then jJ 0j D jJ j, and there is an inner automorphism of G.Q/which defines a Q-rati-
onal isomorphism MJ

�
�!MJ 0 . This implies that the corresponding cuspidal cohomology

spaces are isomorphic, that is,

H cd.�/
cusp .e0.PJ /;C/ Š H

cd.�/
cusp .e0.PJ 0/;C/:

Since these spaces are non-zero by Proposition 5.5, the corresponding Eisenstein cohomol-
ogy spacesH cd.�/.�nX IC/e0.PJ / andH cd.�/.�nX IC/e0.PJ 0 / are isomorphic and non-trivial.
Therefore the space H cd.�/

¹Pº .�nX IC/ is non-zero. The formula for its dimension follows from
the previous argument and arranging the �-conjugacy classes of parabolic Q-subgroups in the
associate class ¹Pº according to the G.Q/-conjugacy class to which they belong.

If one is interested to determine the size of a specific summand H cd.�/
¹Pº .�nX IC/, it is

necessary to analyze conj�.P/ and the cuspidal cohomology H cd.�/
cusp .e0.P/;C/.

Let q D p� > 2 be a prime power, and let �.q/ � SLn.Z/ be the principal congruence
subgroup of level q.

Lemma 5.7. Let P be a parabolic Q-subgroup of the group G=Q D SLn=Q, where
n � 3, which is G.Q/-conjugate to a standard parabolic Q-subgroup PJ indexed by a set
J D ¹˛i1 ; : : : ; ˛ir º � �Q, J ¤ ;, subject to the conditions that if ˛i ; j̨ 2 J then ji � j j � 2:
Then the number of �.q/-conjugacy classes of P is

conj�.q/.P/ D
1

2n�r�1
�

Qn
iD2.q

i � 1/

.q2 � 1/r
:

Proof. By definition, the principal congruence subgroup �.q/ is the kernel of the homo-
morphism SLn.Z/! SLn.Z=qZ/ given by taking the entries of a matrix mod q. Since this
homomorphism is surjective, we have SLn.Z/=�.q/ Š SLn.Fq/ where Fq D Z=qZ is the
finite field with q elements.

We may assume that P D PJ where J D ¹˛i1 ; : : : ; ˛ir º � �Q, J ¤ ; subject to the con-
ditions that if ˛i ; j̨ 2 J then ji � j j � 2:. Then we have the Levi decomposition PJ D LJNJ ,
and, accordingly for the group of real points 0PJ D 0MJNJ . Since � D �.q/ is fixed, we may
write

�.q/PJ D � \ PJ ; �.q/MJ D � \MJ ; �.q/NJ D � \NJ :

We note that �PJ �
0PJ D

0MJNJ . By the strong approximation property the group SLn=Q
has, the SLn.Z/-conjugacy class of PJ coincides with the SLn.Q/-conjugacy class of PJ .
Moreover, the normalizer of PJ in SLn.Q/ is the group PJ itself. Therefore,

(5.3) conj�.q/.P/ D jSLn.Z/=�.q/j � j.SLn.Z/ \ PJ /=�.q/PJ j
�1:

With regard to the first factor, the cardinality of the special linear group

SLn.Z/=�.q/ Š SLn.Fq/

over the finite field Fq is

jSLn.Fq/j D q
n.n�1/
2

nY
iD2

.qi � 1/:
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In order to determine the second factor in formula (5.3), we may assume, without loss of
generality, that PJ has the index set J D ¹˛1; ˛2C1; : : : ; ˛rC.r�1/º. Then the Levi component
of PJ has the form

LJ D ¹diag.A1; A3; : : : ; A2r�1; a2rC1; : : : ; an/ 2 SLn.Q/ j Ai 2 GL2.Q/; aj 2 GL1.Q/º:

Taking the determinant of each of the components of such a “diagonal matrix” induces a homo-
morphism

! W SLn.Z/ \MJ ! .˙1/n�r�1;

formally given by the assignment

diag.A1; A3; : : : ; A2r�1; a2rC1; : : : ; an/

7! .detA1; : : : ; detA2r�1; det a2rC1; : : : ; det an�1/:

Evidently, the homomorphism ! is surjective. Recall that SLn.Z/ \ PJ � 0PJ D
0MJNJ ,

and �.q/ \ PJ � 0PJ D
0MJNJ . Therefore the kernel of ! is

ker! D ¹diag.A1; A3; : : : ; A2r�1; a2rC1; : : : ; an/ 2 SLn.Z/ j Ai 2 SL2.Z/; aj D 1º:

Since q > 2, an element diag.A1; A3; : : : ; A2r�1; a2rC1; : : : ; an/ 2 �.q/ \ PJ satisfies that
detAi D 1 and aj D 1, thus, it lies in the kernel of !. It follows that

j.SLn.Z/ \ PJ /=�.q/PJ j D 2
n�r�1

� Œq.q2 � 1/�r � q
n.n�1/
2
�r ;

where Œq.q2 � 1/� D jSL2.Fq/j, and the last factor is the contribution from the “unipotent”
part .SLn.Z/ \NJ /=�.q/NJ .

Ultimately, the non-vanishing Eisenstein cohomology classes in H cd.�/
¹Pº .�nX IC/ origi-

nate from the cuspidal automorphic forms in the space

H cd.�/
cusp .e0.PJ /;C/ D H

cd.�/�`.wPJ /
cusp .�MnXM ; F�wPJ

/ ¤ ¹0º;

that is, from elements in the space S2.�.m// of cuspidal forms of weight 2 with respect to the
principal congruence subgroup �.m/ of level m in SL2. Since the dimension of this space is
known, one can derive, if needed, quite explicit formulas for the size of H cd.�/

¹Pº .�nX IC/.

Example 5.8. Let n � 3, and let �.q/ � SLn.Q/, with q D p� > 5, p a prime. Take
J D ¹ j̨ º for any simple root in�Q. The Levi subgroup of the corresponding parabolic Q-sub-
group PJ is given as

LJ D ¹diag.a1; : : : ; aj�1; A; ajC2; : : : ; an/ 2 SLn.Q/ j A 2 GL2.Q/; ai 2 GL1.Q/º:

Then we have

H cd.�.q//
cusp .e0.PJ /;C/ Š H

1
cusp.�.q/;C/ Š S2.�.q//˚ S2.�.q//:

Using Hecke’s work [12], the dimension of the latter space is given by

dimC H
1
cusp.�.q/;C/ D 2g�.q/;
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where g�.q/ denotes the genus of the compact Riemann surface attached to the group �.q/ by
adding the cusps to the surface at infinity. The genus is given by the formula

g�.q/ D 1C
�q

12
�
1

2
�

�
q2 � 1

2

�
;

where�q D 1
2
q.q2 � 1/ is the index of�.q/ in SL2.Z/=¹˙1º, and the expression in the square

brackets is the number of �.q/-conjugacy classes of Borel subgroups in SL2.Q/. Observe
that conjGŒ¹PJ º� D n � 1. Thus, we are reduced to determine the number conj�.q/.PJ / of
�.p/-conjugacy classes of parabolic Q-subgroups within the G.Q/-conjugacy class of PJ . By
Lemma 5.7 we have

conj�.q/.P/ D
1

2n�2
�

nY
iD3

.qi � 1/:

Taking the different terms together, we obtain

dimC H
cd.�/
¹PJ º

.�.q/nX IC/ D .n � 1/ �
1

2n�2
�

nY
iD3

.qi � 1/ � g�.q/;

where J D ¹ j̨ º for any simple root in �Q.

5.2. Mixed cases. We now turn our attention to those cases of parabolic Q-subgroups
of SLn that are in case (II) but not yet covered in the preceding investigation. Recall that the
standard parabolic Q-subgroups PJ in case (II) are characterized by the subsets J � �Q sub-
ject to the condition that if ˛i ; ˛iC1 2 J , with i 2 ¹1; : : : ; n � 2º, then ˛iC2 … J . Previously,
in our treatment, we did not discuss how we handle the occurrence of blocks of size three,
i.e. GL3, in the Levi component ŁJ . Though one can expect a result analogous to Theorem 5.6,
exact formulas for the dimension of the cuspidal cohomologyH cd.�/

.cusp/.e
0.PJ /;C/, for example,

in the case of a principal congruence subgroup, are currently not known. However, the existence
of cuspidal cohomology classes for congruence subgroups of sufficiently high level of SL3=Q
or GL3=Q is a consequence of the general results in [14, Section 3], [15] or [31, Section 5].
Nevertheless, in principle, the anticipated result is a structural one but less precise as to the size
of the space of Eisenstein cohomology classes.

The situation is slightly better in the following case where one can give a lower bound
for the dimension in question. Let �.p/ � SL3.Q/ be the principal congruence subgroup of
level p, where p � 3 mod 8 and p � �1 mod 3. Then, by the main theorem in [19],

dimC H
3
cusp.�.p/IC/ � p.p C 1/; where 3 D cd.�.p//:

It is clear that, following the lines of arguments as given in the case of block-2 parabolic
Q-subgroups, a result analogous to Theorem 5.6 can be obtained. We leave details to the
interested reader.

Example 5.9. Let n � 4, and let � � SLn.Q/ be a torsion-free congruence subgroup.
Take J D ¹ j̨ ; j̨C1º for any simple root in �Q. The Levi subgroup of the corresponding
parabolic Q-subgroup PJ is given as

LJ D ¹diag.a1; : : : ; aj�1; A; ajC3; : : : ; an/ 2 SLn.Q/ j A 2 GL3.Q/; ai 2 GL1.Q/º:
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Then there exists a spaceH cd.�/
¹PJ º

.�nX IC/ D
L

Q2¹PJ º=� H
cd.�/.�nX IC/e0.Q/ which is gen-

erated by regular Eisenstein cohomology classes and non-trivial for congruence subgroups of
sufficiently high level. Its dimension is given by

dimC H
cd.�/
¹PJ º

.�nX IC/ D conjGŒ¹PJ º� � conj�.PJ / � dimC H
cd.�/
cusp .e0.PJ /;C/;

where conjGŒ¹Pº� D n � 1.

6. Construction of Eisenstein cohomology classes – Case (I)

For the sake of completeness we briefly review the results obtained in [25] and [26]
which concern the subspace H cd.�/

¹P0º
.�nX;C/ of Eisenstein cohomology classes which origi-

nate from the cohomology of the faces e0.Q/, Q2 ¹P0º, in à.�nX/. Their construction relies on
the theory of Eisenstein series in the framework of the adele group attached to the underlying
algebraic group G=Q; a detailed investigation of certain local and global questions regarding
the constant terms of the Eisenstein series is decisive.

6.1. Cohomology at infinity. We identify the set of non-archimedean places VQ;f with
the set of primes in Q. The group G D SLn has the strong approximation property (with respect
to the set of archimedean places), that is, G.Q/G.R/ is dense in G.A/, or, equivalently, G.Q/
is dense in G.Af /. Let K D

Q
v2VQ;f

Kv be an open compact subgroup of G.Af /. Then we
have

(6.1) G.A/ D G.Q/ � .G.R/ �K/:

Given the open compact subgroup K � G.Af /, we define � WD G.Q/ \K, that is,

(6.2) � D ¹ 2 G.Q/ j  2 Kv for each v 2 VQ;f º:

Then � is an arithmetic subgroup of G.Q/, and we have, using (6.1) and bringing the maximal
compact subgroup KR WD SO.n/ of G.R/ into play,

�nG.R/=KR D G.Q/nG.A/=.KR �K/:

In particular, the group L.1/ WD
Q
p2Q SLn.Zp/ is a maximal open compact subgroup

of G.Af /, and, given a natural number m, the group

L.m/ WD

²
l 2

Y
p2Q

SLn.Zp/
ˇ̌̌̌
l � 1 mod m

³
is an open compact subgroup of G.Af /. Then the arithmetic group � defined in (6.2) is the
principal congruence subgroup �.m/ of level m of SLn.Z/. It is torsion-free for m � 3. Note
that the group L.m/ is a normal subgroup of L.1/ of finite index.

Let P0 � SLn=Q be the minimal parabolic Q-subgroup of upper triangular matrices, and
P0 D L0N0 its Levi decomposition where N0 is the unipotent radical. The maximal split torus
L0 is given as the group ¹diag.t1; : : : ; tn/ DW t 2 SLn.Q/º of diagonal matrices with determi-
nant one. To simplify notation we write T WD L0 for the maximal Q-split torus L0. Note that
the associate class ¹P0º consists of all minimal parabolic Q-subgroups of G.
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It is necessary to deal with all the finitely many �.m/-conjugacy classes of minimal
parabolic Q-subgroups of G at the same time. The face e0.P0/ will be our point of reference in
our adelic description of the cohomology at infinity that depends on the associate class ¹P0º.
With regard to the T.R/-module structure, the cohomology of the face e0.P0/ decomposes as

(6.3) H�.n0;C/ D
M

w2W P0

F�w

where the sum ranges over the elements w in the Weyl group W P0 D W , and F�w denotes
the irreducible finite-dimensional T.C/-module of highest weight �w D w.�P0/ � �P0 : We
choose a harmonic differential form �w 2 �

`.w/.e0.P0/;C/ such that F�w D CŒ�w �, that is,
the form �w represents a class of weight �w . We denote by �w W 0T.R/! C� the character
obtained by restricting �w to 0T.R/. The character �w ; w 2 W , is a sign character. Given the
longest element w0 2 W , �w0 is the trivial character.

Given a fixed natural number m, we consider the space of double cosets

T.Q/nT.A/=T.R/0 � .T.Af / \ L.m// D
0T.R/ � T.Q/nT.Af /=.T.Af / \ L.m//:

The second factor on the right-hand side can be rewritten as

T.Q/nT.Af /=.T.Af / \ L.m// D T.Z/n.T.Af / \ L.1//=.T.Af / \ L.m//

Š Œ.˙1/n.Z=mZ/��n�1:

Consequently, a character on T.Q/nT.Af /=.T.Af / \ L.m// is uniquely determined by the
values it takes on the group Tm WD T.Af / \ L.1/=T.Af / \ L.m/.

Let Lm denote the finite group L.1/=L.m/. The space CŒLm� of C-valued functions
on Lm is a Lm-bimodule in a natural way. The group

Um WD L.m/nL.m/.
0T.Q/ \ L.1// � .N0.Af / \ L.1//

acts via right translation on CŒLm�. The subspace of elements in CŒLm� which are invari-
ant under this action can be identified with CŒLm=Um�. Since T normalizes the unipotent
radical N0, there is a natural action of Tm on CŒLm=Um�. Note that the cosets which are rep-
resented by an element in 0T.Q/ \ L.1/ act trivially. With regard to this action of Tm there is
a decomposition CŒLm=Um� D

L
V� into eigenspaces V�, where � W Tm ! C� ranges over

the characters trivial on 0T.Q/ \ L.1/. As discussed in the previous paragraph we can interpret
the character � as a character on T.Q/nT.Af /=.T.Af / \ L.m//, to be denoted by the same
letter. Finally, by trivial extension, we obtain a quasi-character

� W T.Q/nT.A/=.T.Af / \ L.m//! C�:

In particular, given t1 2 T.R/, �.t1/ D 1.
Next we have to merge this approach with the description of H�.e0.P0/;C/ as given in

the decomposition (6.3). The starting point is the following result (see [25, Satz 5.7]):

Proposition 6.1. Let Dm be a set of representatives for the finitely many �.m/-conju-
gacy classes of minimal parabolic Q-subgroups of G. Then there is an isomorphismM

Q2Dm

H�.e0.Q/;C/ ��! H�.e0.P0/;C/˝CŒLm=Um�:



150 Schwermer, Eisenstein series and the top degree cohomology of arithmetic groups

Therefore, in view of the decomposition H�.e0.P0/;C/ Š
L
w2W F�w , a cohomology

class in
L

Q2Dm H
�.e0.Q/;C/ may be characterized by an element w 2 W and a character

on Tm, trivially extended to a quasi-character � on T.Q/nT.A/=.T.Af / \ L.m//. The latter
character has to be compatible with a given w 2 W in the following sense: Let OTA be the set
of characters

� W T.Q/nT.A/=T.R/0 � .T.Af / \ L.m//! C�:

Given the sign character �w W 0T.R/! C�, indexed by w 2 W , the character � has to be an
element of the set OTA.�w/ of characters in OTA whose restriction to 0T.R/ coincides with �w .

6.2. Eisenstein cohomology classes. The torus T � G can be written as a direct prod-
uct of tori Ti , i D 1; : : : ; n � 1, and accordingly we write � D .�1; : : : ; �n�1/ for the quasi-
character � 2 OTA. If �i ¤ 1 for all i D 1; : : : ; n � 1, then, due to the specific choice of �
in OTA, the quasi-character �i on A�=Q� is not principal, that is, �i is non-trivial on the
maximal compact subgroup of the ideles of norm one modulo Q�. The following result is
[25, Theorem 9.1].

Theorem 6.2. Let � D .�1; : : : ; �n�1/ 2 OTA be a quasi-character such that � is com-
patible with the trivial sign character �w0 which corresponds to the longest element w0 2 W .
Suppose that each component �i , i D 1; : : : ; n � 1, in non-trivial. Then there is a correspond-
ing Eisenstein series E.�w0 ; �; �/ attached to the pair .�w0 ; �/ which is holomorphic at the
point �0 D �P0 and gives rise to a non-trivial cohomology class in H cd.�/.�.m/nX;C/. This
class is represented by the closed harmonic differential form given by the value the Eisenstein
series E.�w0 ; �; �/ takes at the point �0. The restriction of the class ŒE.�w0 ; �; �0/� under the
natural restriction map

r
cd.�
¹P0º
W H cd.�/.�.m/nX;C/!

M
Q2Dm

H�.e0.Q/;C/ ��! H�.e0.P0/;C/˝CŒLm=Um�

is the class started with.

Corollary 6.3. Let �.q/ � SLn.Z/ denote the principal congruence subgroup of level
q D p� , p ¤ 2 a prime, and � � 1. Let H cd.�/

¹P0º
.�.q/nX;C/ be the space of cohomology

classes in H cd.�/.�.q/nX;C/ which restrict non-trivially to the cohomology of a face e0.Q/,
Q 2 ¹P0º. Then

dimC H
cd.�/
¹P0º

.�.q/nX;C/ �

�
1

2
.p� � 1/ � 1

�n�1
:

In particular, if � tends to infinity, the dimension is unbounded.

Proof. The Eisenstein cohomology classes ŒE.�w0 ; �; �0/�, where � D .�1; : : : ; �n�1/
ranges over all characters occurring in the decomposition

CŒLq=Uq� D
M

V�

with �i ¤ 1 for all i D 1; : : : ; n � 1, generate a subspace in H cd.�/
¹P0º

.�.q/nX;C/. Since the
characters in question are uniquely determined by their restriction � W Tp� ! C�, a counting
of the characters which satisfy the given condition leads to the lower bound as claimed.
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7. Comparison with prior work and extensions

7.1. The adjunction of corners and the Steinberg module. The construction by ad-
joining corners to a given arithmetic quotient �nX as in Section 2 has various consequences for
the cohomology of � , among them, first,H i .�IZŒ��/ D 0 except in degree i D d.G/�rkQ G,
where it is a free module I of infinite rank, and, second, there is an isomorphism

H i .�IA/ Š H.d.G/�rkQ G/�i .�I I ˝ A/; i 2 Z;

for any �-module A. In particular, the cohomological dimension of � , denoted cd.�/, is given
by d.G/ � rkQ G. The dualizing module I can be realized on the reduced homology group
QHrkQ G�1.TG;Z/ of the Tits building TG. The natural action of G.Q/ on TG induces an action

on this homology group such that stG WD QHrkQ G�1.TG;Z/ is a module for G.Q/, called the
Steinberg module. Consequently, in the top degree cd.�/, the duality relation (with A D Q)
reads

H cd.�/.�;Q/ Š H0.�I I ˝Q/ Š .stG/� ;

where the subscript .�/� denotes the space of coinvariants under � .
This close relation between the cohomology of an arithmetic subgroup � � G.Q/ in

the degree of the virtual cohomological dimension and the Steinberg module for G.Q/ was
used by several authors, among them Lee and Szczarba [20], Ash [1] in the case SLn, and
Reeder [24] for general G, to detect non-vanishing cohomology classes in H cd.�/.�nX IC/.
More recently, by a close analysis of the Steinberg module, this approach was taken up by
Church, Farb and Putman [4] to prove vanishing and non-vanishing results for H cd.�/.�;Q/,
where � D SLn.Ok/, Ok the ring of integers in an algebraic number field k.

In a different direction, in the case of a congruence subgroup �.p/ � SLn=Q of prime
level p, Miller, Patzt and Putman [23] prove that the �.p/-invariant map

QHn�2.TSLn ;Z/! QHn�2.TSLn=�.p/;Z/;

induced by the quotient map TSLn ! TSLn=�.p/, is surjective. Therefore, the size of the
right-hand side provides a lower bound for the space .stSLn/�.p/, thus, for the dimension
of H cd.�.p//.�.p/;Q/.

In the case n D 3, their result is weaker than the one obtained in [18] and [19] by using
the theory of automorphic forms to construct non-trivial cohomology classes in H�.�;C/,
where � is a torsion-free congruence subgroup of SL3=Q. This also the case for arbitrary n as
we show now.

7.2. Lower bounds for the dimension of H cd.�.q//.�.q/nX I C/. If we put together
the various results in Sections 4, 5, and 6, we can derive lower bounds for the dimension
of the top degree cohomology group H cd.�.q//.�.q/nX IC/ of a given principal congruence
subgroup �.q/ � SLn.Z/ of level q D p� , p ¤ 2 a prime, and � � 1. Our starting point is the
decomposition

H�.�.q/nX;C/ D H�cusp.�.q/nX;C/˚
M
¹Pº¤¹Gº

H�
¹Pº.�.q/nX;C/

of H�.�.q/nX;C/ into the cuspidal cohomology and the Eisenstein cohomology, defined to
be

H�Eis.�.q/nX;C/ WD
M
¹Pº¤¹Gº

H�
¹Pº.�.q/nX;C/:
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For the general case n > 3, the cuspidal cohomology H�cusp.�.q/nX;C/ vanishes in
degree cd.�.q// D n.n�1/

2
, as pointed out in Section 2. In the case n D 2, one has precise

knowledge aboutH 1
cusp.�.q/n;C/, �.q/� SL2.Z/, see Example 5.8. For nD 3, there are only

some non-vanishing results but no exact formulas for the dimension in degree cd.�.q// D 3,
�.q/ � SL3.Z/, see [14, Section 3], [15] or [19].

With regard to the Eisenstein cohomology, using Proposition 4.1, we have

H
cd.�.q//
Eis .�.q/nX IC/ D H cd.�/

¹P0º
.�.q/nX;C/˚

M
¹Pº2Asscd

G

H
cd.�/
¹Pº .�.q/nX;C/;

where Asscd
G denotes the finite set of classes of associate proper standard parabolic Q-subgroups

PJ whose defining set J � �Q belongs to the family Jcd. Note that an associate class ¹Pº falls
into G.Q/-conjugacy classes of parabolic Q-subgroups, thus, the defining set J is not uniquely
determined by ¹Pº.

For each of the summands H cd.�/
¹Pº .�.q/nX;C/ with ¹Pº 2 Asscd

G there is the formula

dimC H
cd.�/
¹PJ º

.�.q/nX IC/ D conjGŒ¹PJ º� � conj�.PJ / � dimC H
cd.�/
cusp .e0.PJ /;C/;

where PJ 2 ¹Pº. Thus, by taking together the lower bound for dimC H
cd.�/
¹P0º

.�.q/nX;C/,
given in Corollary 6.3, and the results in Sections 4 and 5, we obtain a lower bound for the
cohomology group in the top degree.

We exemplify the procedure in the following example: The set Asscd
G attached to the group

G D SL5=Q consists of four classes of associate proper parabolic Q-subgroups. First, one
consists of the four G.Q/-conjugacy classes represented by the standard parabolic subgroups
PJ of parabolic rank three, that is, where J D ¹˛1º; ¹˛2º; ¹˛3º; and ¹˛4º. Second, the standard
parabolic Q-subgroups of parabolic rank two fall into two associate classes, one, say ¹Q2º,
consists of the block-2 parabolic subgroups whereas the other one, say ¹Q3º, consists of the
block-3 parabolic subgroups. Finally, there is the mixed case, denoted ¹Rº; it falls into two
different G.Q/-conjugacy classes, namely, the one of PJ with J D ¹˛1; ˛2; ˛4º, and the one
of PJ 0 with J 0 D ¹˛1; ˛3; ˛4º. The two other maximal standard parabolic Q-subgroups do not
account for a class in Asscd

G . Then, given �.q/ � SL5.Q/, we obtain the estimate

dimC H
cd.�.q//.�.q/nX IC/ �

�
1

2
.q � 1/ � 1

�4
C 4 �

1

23

5Y
iD3

.qi � 1/g�.q/ C RS5.q/;

where RS5.q/ denotes the sum of the remaining summands

dimC H
cd.�/
¹Q2º

.�.q/nX;C/;

dimC H
cd.�/
¹Q3º

.�.q/nX;C/;

dimC H
cd.�/
¹Rº .�.q/nX;C/:

A formula, depending only on the level q, for each of these terms requires explicit knowl-
edge of the cuspidal cohomology groups H cd.�.q//

cusp .e0.P /;C/, thus, at least for the latter
two cases, a dimension formula for spaces of cohomological cuspidal automorphic forms
for congruence subgroups of SL3.Q/. This is currently out of reach. However, as mentioned
before, one has non-vanishing results for congruence groups of sufficiently high level, see
[14], [15], [19].
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Remark 7.1. For arbitrary n � 3 and �.q/ � SLn.Q/, q D p� > 2, p a prime, the
lower bound for the dimension of the cohomology of �.q/ in the top degree would read as

dimC H
cd.�.q//.�.q/nX IC/(7.1)

�

�
1

2
.q � 1/ � 1

�n�1
C .n � 1/ �

1

2n�2
�

nY
iD3

.qi � 1/ � g�.q/ C RSn.q/;

where RSn.q/ has the analogous meaning. Note that the lower bound given by formula (7.1),
taken without the term RSn.q/, exceeds the one given in [23, Section 4].

7.3. Other groups and fields. Let � be a torsion-free arithmetic subgroup of a con-
nected semi-simple algebraic Q-group G of positive Q-rank. For the sake simplicity we assume
that G is Q-split and belongs to the family of classical groups, meaning, beside general linear
groups, symplectic groups, orthogonal groups or unitary groups. Given a finite-dimensional
irreducible representation .�; E/ of the real Lie group G D G.R/ on a complex vector space,
the cohomologyH�.�nX;E/ of the locally symmetric space �nX has a direct sum decompo-
sition,

H�.�nX;E/ D H�cusp.�nX;E/˚
M
¹Pº

H�
¹Pº.�nX;E/

into the subspace of classes represented by cuspidal automorphic forms for G with respect to �
and the Eisenstein cohomology. The latter space is decomposed according to the classes ¹Pº of
associate proper parabolic Q-subgroups of G. Each summand is built up by Eisenstein series
(derivatives or residues of such) attached to cuspidal automorphic representations � on the Levi
components of elements in ¹Pº.

Being interested in the cohomology group H cd.�/.�nX;E/ in the degree of the coho-
mological dimension of � , it should be possible to determine which associate classes ¹Pº of
parabolic Q-subgroups of G finally contribute to this decomposition. Recall that a parabolic
Q-subgroup is the semi-direct product of its unipotent radical and any Levi subgroup. These
Levi subgroups are products of groups of GL-type and of isometry groups.

For example, in the case of the symplectic group Spn=Q of rank n, up to G.Q/-conjugacy,
a maximal parabolic Q-subgroup has the form Pr Š LrNr , r D 1; : : : ; n, with Levi subgroup
Lr Š GLr � Spn�r if r < n, and Ln Š GLn if r D n, and Nr is the unipotent radical. Note
that such a parabolic Q-subgroup is conjugate to its opposite parabolic subgroup, thus, the
associate class ¹Prº coincides with the G.Q/-conjugacy class Pr . All other standard parabolic
Q-subgroups are expressible as intersections of the proper standard maximal parabolic Q-sub-
groups.

A result, analogous to Proposition 4.1, hinges on an explicit knowledge of the range in
which the Levi subgroup of a given parabolic Q-subgroup P of G has possibly non-vanishing
cuspidal cohomology, that is, H�cusp.e

0.P /; E/ is non-trivial. In view of the final construc-
tion of Eisenstein cohomology classes, this requires a thorough understanding of the cuspidal
cohomology of arithmetic groups in classical groups. We refer to [22] and [30].

With regard to the existence of Eisenstein cohomology classes inH�
¹P0º

.�nX;E/, where
¹P0º denotes the associate class of minimal parabolic Q-subgroups of G one has to expect
a result similar to Theorem 6.2 and its Corollary. In the case G D Spn, see [16], and, in the
case of a generic coefficient system, see [29].
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If � is an arithmetic subgroup of a connected semi-simple algebraic group G defined over
some algebraic number field k and of positive k-rank, one can pose analogous questions. Work
of Harder in the case GL2=k (see [9]) stands as initial guideline, see also [10] or [31].
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